
Sector vs. Hadoop

A Brief Comparison Between the Two Systems

BackgroundBackground
 Sector is a relatively “new” system that is broadly comparable

to Hadoop, and people want to know what are the differences.

 Is Sector simply another clone of GFS/MapReduce? No.

 These slides compare most recent versions of Sector and
Hadoop as of Nov. 2010.
 Both software are still under active development.

 If you find any inaccurate information please contact Yunhong If you find any inaccurate information, please contact Yunhong
Gu [yunhong.gu # gmail]. We will try to keep these slides
accurate and up to date.

Design Goals

Sector Hadoop

 Three-layer functionality:
 Distributed file system

 Two-layer functionality:
 Distributed file systemy

 Data collection, sharing, and
distribution (over wide area
networks)

y
 Massive in-storage parallel

data processing with
simplified interface networks)

 Massive in-storage parallel
data processing with

simplified interface

simplified interface

History

Sector Hadoop

 Started around 2005 - 2006, as
a P2P file sharing and content
distribution system for

 Started as a web crawler
& indexer, Nutch, that distribution system for

extreme large scientific
datasets.

 Switched to centralized general

adopted GFS/MapReduce
between 2004 – 2006.

 Switched to centralized general
purpose file system in 2007.

 Introduced in-storage parallel
data processing in 2007

 Y! took over the project
in 2006. Hadoop split from
Nutchdata processing in 2007.

 First “modern” version
released in 2009.

Nutch.
 First “modern” version

released in 2008.

Architecture

Sector Hadoop

 Master-slave system
 Masters store metadata,

 Master-slave system
 Namenode stores Masters store metadata,

slaves store data
 Multiple active masters

 Namenode stores
metadata, datanodes store
data

 Clients perform IO
directly with slaves

 Single namenode (single
point of failure)
Cli f IO Clients perform IO
directly with datanodes

Distributed File System

Sector HDFS

 General purpose IO
 Optimized for large files

 Write once read many (no
random write) Optimized for large files

 File based (file not split by
Sector but users have to

)
 Optimized for large files
 Block based (64MB block

take care of it)
 Use replication for fault

l

as default)
 Use replication for fault

ltolerance tolerance

Replication

Sector HDFS

 System level default in
configuration

 Per file replica factor can be

 System level default in
configuration

 Per-file replica factor can be
specified in a configuration
file and can be changed at
run-time

g
 Per-file replica factor is

supported during file run time
 Replicas are stored as far

away as possible, but within
a distance limit, configurable

creation
 For 3 replicas (default), 2

on the same rack the 3rd , g
at per-file level

 File location can be limited
to certain clusters only

on the same rack, the 3rd
on a different rack

y

Security

Sector Hadoop

 A Sector security server is
used to maintain user

d ti l d i i

 Still in active development,
new features in 2010

credentials and permission,
server ACL, etc.

 Security server can be

 Kerberos/token based
security framework to

extended to connect to
other sources, e.g., LDAP

 Optional file transfer

authenticate users
 No file transfer

encryptionp
encryption

 UDP-based hole punching
firewall traversing for clients

encryption

firewall traversing for clients

Wide Area Data Access

Sector HDFS

 Sector ensures high
performance data transfer with
UDT a high speed data transfer

 HDFS has no special
consideration for wide UDT, a high speed data transfer

protocol
 As Sector pushes replicas as far

away from each other as

area access. Its
performance for remote

 ld b l t away from each other as
possible, a remote Sector client
may find a nearby replica

 Thus Sector can be used as

access would be close to a
stock FTP server.

 Its security mechanism Thus, Sector can be used as
content distribution network
for very large datasets

 Its security mechanism
may also be a problem for
remote data access.

In-Storage Data Processing

Sphere Hadoop MapReduce

 Apply arbitrary user-
defined functions (UDFs)

 Support the MapReduce
framework()

on data segments
 UDFs can be Map, Reduce,

or others
 Support native

MapReduce as wellMapReduce as well

Sphere UDF vs. Hadoop MapReduce

Sphere UDF Hadoop MapReduce

 Parsing: permanent record
offset index if necessary

 Parsing: run-time data
parsing with default or

 Data segments (records,
blocks, files, and directories)
are processed by UDFs

p g
user-defined parser

 Data records are
are processed by UDFs

 Transparent load balancing
and fault tolerance

processed by Map and
Reduce operations

 Transparent load balancing
 Sphere is about 2 – 4x faster

in various benchmarks

 Transparent load balancing
and fault tolerance

Why Sphere is Faster than Hadoop?Why Sphere is Faster than Hadoop?
 C++ vs. Java
 Different internal data flows
 Sphere UDF model is more flexible than MapReduce
 UDF dissembles MapReduce and gives developers more control to

the processthe process
 Sphere has better input data locality
 Better performance for applications that process files and group of

files as minimum input unitfiles as minimum input unit
 Sphere has better output data locality
 Output location can be used to optimize iterative and combinative

 h processing, such as join
 Different implementations and optimizations
 UDT vs. TCP (significant in wide area systems)U vs. C (s g ca t w a a syst s)

Compatibility with Existing Systems

Sector/Sphere Hadoop

 Sector files can be
accessed from outside if

 Data in HDFS can only be
accessed via HDFS interfaces
I H d bl h necessary

 Sphere can simply apply an
existing application

 In Hadoop, executables that
process files may also be
wrapped in Map or Reduce
operations but will cause extra existing application

executable on multiple
files or even directories in
parallel if the executable

operations, but will cause extra
data movement if file size is
greater than block size

 Hadoop cannot process parallel, if the executable
accepts a file or a
directory as input

 Hadoop cannot process
multiple files within one
operation.

ConclusionsConclusions
 Sector is a unique system that integrates distributed file

system, content sharing network, and parallel data system, content sharing network, and parallel data
processing framework.

 Hadoop is mainly focused on large data processing within
a single data center.

 They overlap on the parallel data processing support.

Our RecommendationsOur Recommendations
 Consider using Sector if:
 You need a scalable fault-tolerant general purpose file system You need a scalable, fault tolerant, general purpose file system
 You have data across multiple data centers
 You have users who upload and download data from remote

locations
 You are a C++ programmer
 You have many legacy applications and you don’t want to re You have many legacy applications and you don t want to re-

write them to suit a new platform
 You value the fact that Sphere is about 2 – 4 times faster than

Hadoop

Our Recommendations (cont.)Our Recommendations (cont.)
 Consider using Hadoop if:
 You are a Java programmer You are a Java programmer
 It is important for you to have data semantic support such as

HBase or Hive
 You can benefit from reusing existing packages from the larger

Hadoop community

